flinkcdc同步PostgreSQL到SQLServer
1.必须用Linux系统,Windows下低版本Flink有Bug,高版本的API改动太大,资料太少难开发。
2.我是使用Docker用Centos7镜像,然后Flink版本为1.16.0。https://archive.apache.org/dist/flink/flink-1.16.1/
3.安装Java,参考https://www.saoniuhuo.com/article/detail-92.html,这个教程唯一不好的就是重启后环境变量失效。
4.SQLServer开启允许远程连接,配置好记得重启电脑,重启服务不行。

5.PostgreSQL我从官网下载的最新版,也需要开启允许远程连接。
6.开启远程连接是为了让Docker容器的Centos可以访问宿主的数据库。
7.分别给SQLServer和PostgreSQL创建表,SQLServer的id不需要设置主键。


7.修改PostgreSQL的pg_hba.conf配置文件,多加一条信息设置允许远程访问

8.修改PostgreSQL的postgresql.conf配置文件,FlinkCDC才可以监听到


9.IDEA创建Maven项目
10.把用到的jar放到Flink的lib目录下,然后Java项目添加Jar的引用。

11.必须说明一点,Flink高和低版本API变化很多,建议Jar版本和Flink版本保持一致!!!
12.创建FlinkCdcDataStream.java,编写Java代码监听PostgreSQL表的变化
SourceFunction<String> sourceFunction = PostgreSQLSource.<String>builder() .hostname("192.168.0.148").port(5432) .database("test_db_11") // monitor postgres database .schemaList("public") // monitor inventory schema .tableList("public.test_table_11") // monitor products table .decodingPluginName("pgoutput") .slotName("t_table_slot") .username("postgres") .password("123") .deserializer(new JsonDebeziumDeserializationSchema()) // converts SourceRecord to JSON String .build(); StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); env.enableCheckpointing(3000); env.addSource(sourceFunction) .addSink(new ClickHouseSink("test_table_mssql1", "id")); env.execute();

13.创建ClickHouseSink.java,编写监听到数据变化后同步到SQLServer,代码太多就不截图,代码放到下面吧
package org.example; import com.alibaba.fastjson2.JSON; import com.alibaba.fastjson2.JSONObject; import org.apache.flink.configuration.Configuration; import org.apache.flink.streaming.api.functions.sink.RichSinkFunction; import java.sql.Connection; import java.sql.DriverManager; import java.sql.PreparedStatement; public class ClickHouseSink extends RichSinkFunction<String> { private Connection connection; private String targetTableName; private String idName; public ClickHouseSink(String targetTableName, String idName) { this.targetTableName = targetTableName; this.idName = idName; } @Override public void open(Configuration parameters) throws Exception { super.open(parameters); try { if (this.connection == null) { connection = getConnection(); } } catch (Exception e) { System.out.println(e.getMessage()); } } @Override public void close() { try { //关闭连接和释放资源 if (connection != null) { connection.close(); } } catch (Exception e) { System.out.println(e.getMessage()); } } @Override public void invoke(String sql, Context context) { JSONObject res = JSON.parseObject(sql); System.out.println(res); try { JSONObject after = res.getJSONObject("after"); JSONObject before = res.getJSONObject("before"); switch (res.getString("op")) { case "r": System.out.println("读取数据"); break; case "d": System.out.println("删除数据"); if (before != null) { PreparedStatement ps = this.connection.prepareStatement("delete from " + targetTableName + " where " + idName + "=?"); ps.setInt(1, before.getInteger(idName)); ps.execute(); ps.close(); } break; case "u": System.out.println("更新数据"); PreparedStatement ps = this.connection.prepareStatement("update " + targetTableName + " set name=?, age=? where id = ?"); ps.setString(1, after.getString("name")); ps.setInt(2, after.getInteger("age")); ps.setInt(3, after.getInteger("id")); ps.execute(); ps.close(); break; } if (res.getString("op").equals("c")) { System.out.println("插入数据"); if (after != null) { PreparedStatement ps = this.connection.prepareStatement("insert into " + targetTableName + "(id, name, age) values(?,?,?)"); ps.setInt(1, after.getInteger("id")); ps.setString(2, after.getString("name")); ps.setInt(3, after.getInteger("age")); ps.execute(); ps.close(); } } } catch (Exception ex) { System.out.println("异常" + ex.getMessage()); } } private static Connection getConnection() { Connection con = null; try { Class.forName("com.microsoft.sqlserver.jdbc.SQLServerDriver").newInstance(); con = DriverManager.getConnection("jdbc:sqlserver://192.168.0.148:1433;database=test_db_mssql;user=test;password=123;encrypt=true;trustServerCertificate=true;loginTimeout=30;"); } catch (Exception e) { System.out.println("-----------sqlserver get connection has exception , msg = " + e.getMessage()); } return con; } }
15.IDEA添加工件,并且选择入口类

16.构建工件得到一个Jar包


17.启动Docker端口映射8081然后启动Flink1.16.0,记得需要提前把Jar放进Flink的lib下面,否则Flink无法加载Jar会上传失败
18.提交刚刚生成的Jar包,并且运行



至此已经完成同步功能。
接下来看下效果:
1.PostgreSQL插入数据,SQLServer实时同步


PostgreSQL默认情况无法修改表,我就不重新建一个表了。
MySQL测试过增删改都是实时同步,代码是同一份。